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Abstract— Many basic tasks in computational biology 
involveoperations on individual DNA and genomic 
sequences. These sequences, even when anonymized, are 
vulnerable to re-identification attacks and may reveal 
highly sensitive information about individuals. To support 
large-scale biomedical research projects, organizations 
need to share person-specific genomic sequences without 
violating the privacy of their data subjects. We present a 
relatively efficient, privacy-preserving implementation of 
fundamental genomic computation without disclosing the 
raw genomic sequences. Organizations contribute 
encrypted genomic sequence records into a centralized 
repository, where the administrator can perform queries, 
without decrypting the data.  
Keywords—Databases, genomics, privacy, security. 
 

I. INTRODUCTION 
Genomic data such as DNA and protein sequences are 
increasingly collected by government agencies for law 
enforcement and medical purposes, disseminated via 
public repositories for research and medical studies, and 
even stored in private databases of commercial 
enterprises.  For example, deCODE Genetics aims to 
collect the complete genome sequences of the entire 
population of Iceland, while the non-profit HapMap 
Project is developing a public repository of 
representative genome sequences in order to help 
researchers to discover genes associated with specific 
diseases. The underlying genome records are typically 
collected from specific individuals, and thus contain a 
lot of sensitive personal information, including genetic 
markers for diseases, information that can be be used to 
establish paternity and maternity, and so on. Therefore, 
genomic records are usually stored in an anonymized 
form, that is, without explicit references to the identities 
of people from whom they were collected. However, to 
realize cost-effective specialized services, scientists 
need to characterize the influence of genomic variation 
over a wide array of health features, such as clinical 
diagnostics and treatment response. To facilitate data 
sharing, organizations in various countries, including 
Estonia, Iceland, Japan, Mexico, Norway, Sweden, the 
United Kingdom, and the United States are establishing 
data repositories that centralize person-specific 
biomedical records for research purposes. Despite the 
potential benefits to health care, person-specific 
genomic records must be shared in a manner that 

preserves the anonymity of the data subjects. This 
requirement is rooted in both  social concerns and 
public policy. Many people fear that sensitive 
information learned from their medical and genomic 
records will be misused or abused. To mitigate such 
concerns, many countries have enacted policies that 
limit the sharing of a subject’s genomic information in a 
personally identifiable form. In the United States, for 
instance, the National Institutes of Health (NIH) is 
drafting policy that will require  scientists to share 
genomic data studied with NIH funding once 
“identifiable information” has been removed. Consider 
the following scenario. John is a principle investigator 
located at the University of Texas Southwestern 
Medical Center and Mike is a principle investigator 
located at the Vanderbilt University Medical Center. 
Both John and Mike are independently funded by the 
NIH to collect data from hospital patients and conduct 
genome wide association studies on Alzheimer’s 
disease. To comply with the NIH policy, at the 
completion of their studies, John and Mike need to share 
their data collections to a centralized repository, so that 
researchers around the country, such as Charlie at the 
National Institute on Aging can perform scientific 
investigations on the integrated data, such as “How 
many records contain a diagnosis of juvenile 
Alzheimer’s and gene variant X?” How can John and 
Mike share the biomedical records so that biomedical 
researchers can conduct their scientific investigations 
without revealing the identities of the data subjects? To 
summarize the problem, data collectors, such as John 
and Mike need to satisfy two goals when sharing 
genomic data: 
1) Data utility: the data should be useful for scientific 
investigations; 
2) Data privacy: the data should not reveal the subjects’ 
identities. 
Often, these goals are considered to be contradictory 
and existing privacy methods tend to favor one over the 
other. In this paper, however, we demonstrate that 
utility and privacy goals can be simultaneously satisfied 
for specific scientific endeavors. 
 

II. GENOMIC DATA PRIVACY TECHNIQUES 
 To date, various privacy protection strategies have been 
designed to remove identifying information prior to 
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sharing genomic data. For the most part, existing 
genomic data privacy techniques. can  be  roughly  
grouped  into  two  approaches  with  distinct benefits 
and drawbacks: 1) data deidentification and 2) data 
augmentation. Privacy protections based on 
“deidentification” advocate the removal, or encryption, 
of person-specific identifiers, such as name and social 
security number, initially associated with genomic 
records. Deidentification enables data collectors to 
disclose all genomic information that has been 
collected, but it is an ad hoc process and provides no 
guarantees of privacy protection. In fact, it was recently 
shown that in many cases, knowledge gleaned from 
deidentified genomic data can be exploited to 
“reidentify” records to named subjects in publicly 
accessible resources through simple automated methods. 
Data augmentation techniques provide exact guarantees 
of privacy protection. As an example, consider that a 
prime factor in reidentification is that a subject’s DNA 
is uniquely distinguishable. In particular, experimental 
evidence indicates that less than 75 single nucleotide 
polymorphisms (SNPs), features common to genomic 
studies, are sufficient to uniquely distinguish a subject’s 
DNA record in a population. A formal model of privacy 
protection that addresses uniqueness is the 
generalization of a subject’s DNA sequence so that the 
resulting record is indistinguishable from other shared 
records. For instance, the DNA sequences AACTAA 
and AAGTAC can be generalized to the common AA[C 
or G]TA[A or C]. Privacy protection based on 
generalization is controlled by varying the number of 
records that are rendered indistinguishable. Though 
generalization formally prevents data reidentification, it 
changes the genomic records in ways that may limit 
their scientific usefulness.  
 

III. CRYPTOGRAPHY ARCHITECTURE 
In this paper, we propose an alternative approach to 
genomic data privacy protection that is based on 
cryptography. Our model ensures that: 1) the data utility 
of protected records is equivalent to that achieved by 
deidentification and 2) the data privacy is equivalent to 
that achieved by data augmentation schemes. As an 
overview, our model works as follows. Data holders 
John and Mike transmit encrypted versions of their 
records to a third party’s data repository. The repository 
administrator executes queries on behalf of Charlie the 
researcher without decrypting any of the records. The 
results of the query are then sent to a third party who 
decrypts the aggregation of the result and sends the 
answer to the scientist. This architecture incorporates 
two different third parties for security-related benefits. 
There is no opportunity to decrypt the data unless both 
third parties collaborate. As a result, the use of multiple 
third parties ensures that there is no single point of data 
compromise. Thus, if a hacker breaks into one of the 

third party’s computer systems, the hacker cannot learn 
the sensitive information in the encrypted records. 
Recognize that though the data remains encrypted at all 
times, the results of queries themselves can violate 
privacy requirements. For instance, if the answer to 
Charlie’s query is such that there is only one record with 
DNA sequence “AATCAATGAA” and juvenile 
Alzheimer’s disease, then Charlie has uniquely 
pinpointed an individual’s record. Thus, it is necessary 
for the third party to ensure that query results, or the 
combination of a series of query results issued by a 
researcher, do not permit the triangulation of an 
individual’s record. This process, known as query 
restriction, is necessary to ensure that our framework 
achieves identity protection; however, this topic has 
been studied extensively in the database security 
community, and thus, we neglect the presentation of 
query restriction in this paper. The main contribution of 
our model is in the analysis of encrypted genomic data. 
To the best of our knowledge, there is no off-the-shelf 
product or literature that can be applied to satisfy this 
component of the framework. As such, this paper 
focuses on the cryptographic protocols that are 
necessary to build and query encrypted genomic 
databases. In addition, we provide experimental 
validation so that in our framework, queries can be 
answered efficiently for real world biomedical 
applications. 

 
           Fig:1. Architecture of Proposed System  
 

IV. METHODS 
The goal of our research is to create a system that 
simultaneously: 1) stores DNA sequences in a database 
securely, 2) supports querying tasks that would be 
performed on the original sequences, 3) facilitates the 
DNA data holders to submit their records to our system 
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without ever knowing the secret keys that can be used to 
decrypt the encrypted data, and 4) prevents a single 
point of failure to ensure that if a hacker breaks into any 
single site, he/she will not be able to learn the 
confidential DNA data. To achieve these goals, we 
designed an architecture that incorporates four types of 
participants: data holders, data users, a DS, and a KHS. 
In Fig. 1, we depict the relationship of these participants 
and a broad overview of the architecture.  Imagine that 
the set of data holders are a set of hospitals and that the 
set of data users are biomedical researchers. For this 
research, we assume each hospital maintains one or 
more DNA records and that all hospitals collect records 
on the same set of attributes (i.e., the same regions of 
the genome). Recall, in the earlier scenario, the data 
holders need to share the data with a third party for 
public dissemination purposes, which in the context of 
genome wide association studies in the United States 
will be the NIH. Yet, notice that in our framework, we 
incorporate two third parties: a data storage site (DS) 
and a key holder site (KHS). The additional third party 
is crucial to the security of the framework. The DS is 
where encrypted DNA is stored and processed, whereas 
KHS manages the cryptographic keys that are used for 
encryption and decryption of the genomic records stored 
in a database at DS, as well as the query results to 
biomedical researchers. Thus, if one of the third parties 
is , the decrypted DNA records are not revealed. 

V. CRYPTOGRAPHIC BASICS 
A)Secure Hash Algorithm  
For the implementation of architecture we are using the 
SHA-1 algorithm. The Secure Hash Algorithm (SHA) 
was developed by National Institute Of Standards and 
Technology (NIST) and published as a federal 
information processing standard (FIPS 180) in 1993; 
and is generally referred as SHA-1. SHA is based on the 
MD4 algorithm and its design closely models MD4. 
SHA-1 Logic 
The algorithm takes as input a message with a 
maximum length of less than 264 bits and produces as 
output a 160-bit message digest. The input is processed 
in 512-bit blocks. The overall processing of a message 
follows the structure as MD5 with a block length of 512 
bits and a hash algorithm and chaining variable length 
of 160 bits. The processing consists of the following 
steps: 
Step 1: Append Padding bits: The message is padded so 
that its length is congruent to 448 module 512 (length =  
448 mod 512). Padding is always added, even if the 
message is already of 1 to 512. The padding consist of a 
single 1-bit followed by necessary number of 0-bits. 
Step 2: Append Length: A block of 64 bits is appended 
to the message. This block is treated as an unsigned 64-
bit integer and contains the length of the original 
message (before the padding). 

Step 3: Initialize MD buffer: A 160-bit buffer is used to 
hold intermediate and final results of the hash function. 
The buffer can be represented as five 32-bit registers (A, 
B, C, D, E). These registers are initialized to the 
following 32-bit integers( hexadecimal values): 
 
  A=67452301 
  B=EFCDAB89 
  C=98BADCFE 
  D=C3D2E1F0 
Note that the first four values are the same as those used 
in MD5. However, in the case of SHA-1, these values 
are stored in big-endian format, which is the most 
significant byte of word in the low-address byte 
position. As 32-bit strings, the initialization values 
appear as follws. 
 
 Word A: 67 45 23 01 
 Word B: EF CD AB 89 
 Word C: 98 BA DC FE 

Word D: 10 32 54 76 
Word E: C3 D2 E1 F0 

Step4: Process message in 512-bit (16-word) blocks: 
The heart of the algorithm is a module that consists of 
four rounds of processing of 20 steps each. The logic is 
illustrated in the Figure below. The Four rounds have a 
similar structure, but each uses a different primitive 
logical function, which we refer to as f1, f2, f3, and f4. 
 Each round takes as input the current 512-bit block 
being processed (Yq) and the 160-bit buffer value 
ABCDE and updates the contents of the buffer. Each 
round also makes use of an additive constant kt, where 
0<=t<=79 indicates one of the 80 steps across five 
rounds. In fact, only four distinct constants are used. 
The output of the fourth round (eightieth step) is added 
to the first round (CVq) to produce CVq+1. 
The addition is done independently for each of the five 
words in the buffer with each of the corresponding 
words in CVq, using addition module 232. 
Step 5: Output:  After all L 512-bit blocks have been 
processed, the output from the Lth stage is the 160-bit 
message digest. 
We can summarize the behavior of SHA-1 as follows: 
 
  CV0=IV 
  CVq+1=SUM32 (CVq, ABCDEq ) 
  MD=CVL 
Where 
IV          = initialize value of the ABCDE buffer. 
ABCDEq= the output of the last round of     processing 
of the qth message block 
L         = the number of blocks in the message (including 
padding and length fields) 
SUM32 = Addition modulo 232 performed separately on 
each word of the pair of inputs 
MD       =final message digest value 
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Fig:2 SHA Operation(single step) 

B. MAC(Message authentication code) 
After applying the SHA-1 on the message we get the 
message digest, then we apply the MAC for the purpose 
of double encryption, so that to enhance the security of 
the message. 

 
 

VI .CONCLUSION AND FUTURE SCOPE 
Even though cryptography is a ground-breaking 
technology, de-identification of data is the bottle neck 
for the security of genomic sequences, so we providing 
security by using the sha algorithm.  

     Our futures work aims at further expanding the 
security as well as speed up the query execution times 
with minimal loss in accuracy.  
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